UNIVERSITY COLLEGE LONDON

EXAMINATION FOR INTERNAL STUDENTS

MODULE CODE : MATH1402

ASSESSMENT : MATH1402A
PATTERN
MODULE NAME : Mathematical Methods 2

DATE : 11-May-09

TIME : 10:00

TIME ALLOWED : 2 Hours 0 Minutes

All questions may be answered, but only marks obtained on the best four questions will count. The use of an electronic calculator is not permitted in this examination.

1. a) Write down the formula of the linear Taylor's approximation of a function $f(x, y)$ near a point (x_{0}, y_{0}).
What can we say about the rate of this approximation?
b) Show that the tangent plane to the graph of a function $f(x, y)$ at a point $\left(x_{0}, y_{0}, z_{0}\right), z_{0}=f\left(x_{0}, y_{0}\right)$ is a horizontal plane if and only if $\nabla f\left(x_{0}, y_{0}\right)=\mathbf{0}$.
c) For the function $f(x, y)=x+e^{x y}$ find the equation of its tangent plane at the point $(1,0,2)$.
d) For the function f from Part (c), find a vector $\mathbf{u} \neq \mathbf{0}$ which is orthogonal to $\nabla f(1,0)$.
2. a) Let R be a region on the $x y$ - plane defined by

$$
x^{2}+y^{2} \leq 1, x \geq 0, y \leq 0
$$

Find the integral

$$
\iint_{R} e^{\left(x^{2}+y^{2}\right)} x^{2} d x d y
$$

b) Let the surface S be the graph of the function $f(x, y)=\exp (x+y)$, where (x, y) satisfy

$$
|x|+|y| \leq 2
$$

Find the surface integral

$$
\iint_{S} z^{2} d S
$$

[Hint: Use the change of variables: $u=x+y, v=x-y$.]
3. a) State the Divergence Theorem carefully.
b) Let D be a cylinder,

$$
x^{2}+y^{2} \leq 1, \quad 0 \leq z \leq 2
$$

Let \mathbf{F} be a vector field

$$
\mathbf{F}(x, y, z)=\left(1-a^{2}\right) x^{3} \mathbf{i}+\left(1-a^{2}\right) y^{3} \mathbf{j}+\left(x^{2}+y^{2}\right) z \mathbf{k}
$$

where a is a real number. Find the flux of \mathbf{F} through S, where S is the surface surrounding D.
c) Let \mathbf{F} and S be as in Part (b). Find the values of a when the flux is equal to 0.
d) Use the Divergence Theorem to prove the First Green's identity:

$$
\iiint_{V}\left(f \nabla^{2} g+\nabla f \cdot \nabla g\right) d x d y d z=\iint_{S} f \frac{\partial g}{\partial \mathbf{n}} d S
$$

Here $f(x, y, z), g(x, y, z)$ are smooth functions in a bounded domain $V \subset \mathcal{R}^{3}$, S is a smooth surface surrounding V and \mathbf{n} is an outward-looking unit normal to V.
4. a) State Stoke's Theorem carefully.
b) Verify Stoke's Theorem for the vector field

$$
\mathbf{F}(x, y, z)=y \mathbf{i}+2 z \mathbf{j}+x z \mathbf{k}
$$

and the surface S defined by

$$
x^{2}+y^{2}+z^{2}=25, \quad z \geq 4
$$

5. a) State Green's Theorem in the plane carefully.
b) Sketch the closed curve C which is described as follows: Begin at point $(0,0)$ and go to the point $(\pi, 0)$ along the straight line. Then go back to $(0,0)$ along the curve described by the equation $y=\sin (x)$. This description also gives a correct orientation of C.
c) Let

$$
\mathbf{F}(x, y)=y \mathbf{i}+\left(x^{2} y+\exp \left(y^{2}\right)\right) \mathbf{j}
$$

Use Green's Theorem to calculate the circulation of \mathbf{F} around C.
6. a) Describe the necessary and sufficient conditions such that, for any $\mathbf{X}_{\mathbf{0}}, \mathbf{X}_{\mathbf{1}} \in$ \mathcal{R}^{3}, the integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of the choice of C and depends only on $\mathbf{X}_{\mathbf{0}}$ and \mathbf{X}_{1}.
b) Let

$$
\mathbf{F}=\frac{2 x z}{1+x^{2} z} \mathbf{i}+y \mathbf{j}+\frac{x^{2}}{1+x^{2} z} \mathbf{k}
$$

Show that $\nabla \times \mathbf{F}=\mathbf{0}$ and find a potential function for \mathbf{F}.
c) Let

$$
\mathbf{G}=\frac{2 x z}{1+x^{2} z} \mathbf{i}+(x+y) \mathbf{j}+\frac{x^{2}}{1+x^{2} z} \mathbf{k} .
$$

Let C be a unit circle centered at $\mathbf{O}=(0,0,0)$ lying in the plane $y=z$. Find

$$
\oint_{C} \mathbf{G} \cdot d \mathbf{r}
$$

[Hint: Use Part (b).]

